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LETTER TO THE EDITOR 

Absence of a stiffness instability for a model critical-wetting 
transition in three dimensions 

A 0 Parry and C J Boulter 
Department of Mathematics, Imperial College, London SW7 2BZ UK 

Received IO March 1994 

Abstract. We have tested the generality of the stiffness instability mechanism m t l y  proposed 
by Fisher and Jim for the critical wetting phase transition in three-dimensional system with short- 
ranged forces. We extend the analysis of Fisher and Jin to a class of A u h t - h u g e  t y p  models 
and find that the stiffness instability is specific to the case where the unrenormalized transition 
is precisely second order (i.e where the mean-field specific heat critical exponent is pRcisely 
zem). P; linear functional renormalization-goup analysis of this Aukrust-huge class of models 
yields exactly the same dramatic fluctuation-induced non-universal Critical exponents that have 
previously been predicted. We conclude by considering possible implicatiav of this result on 
€uture king model simulations and on the basis of this propose a numerical test for the validity 
of existing renodimion-goupanalyses of ecntinuum effeeiive interfacial Hamiltonians. 

Over recent years much attention has been focused on the nature of the critical-wetting 
phase transition in threedimensional systenis with short-ranged forces [l-111. Recall 
that the initial renormalization group (RG) predictions [l-31 of dramitic non-universal 
critical exponents have. not been observed in extensive Monte Carlo simulation studies 
of the Ising model [4-71. More recently  fisher^ and Jin [8,9] have argued that for the 
LandauGinzburg-Wilson (mw) Hamiltonian with strictly short-ranged surface interactions 
a stiffness instability mechanism exists which may drive a bare critical-wetting transition 
fluctuation-induced weakly first-order. The origins of this mechanism are found in the 
inclusion of a specific .position dependent stiffness coefficient in the effective interfacial 
Hamiltonian model [lo-131. In the present letter we test the robustness of the instability 
mechanism by studying renormalization effects for a different model of wetting in three 
dimensions with short-ranged forces. We shall show that within the class of models studied 
the instability mechanism is specific to the case where the bare, mean-field (hm), critical- 
wetting transition is precisely second order in the Ehemfest classification (i.e a?' = 0). For 
the cases where the unrenormalized models result in critical-wetting with mean-field specific 
heat critical exponent pfF e 0 the linear functional renormalization group &alysis (with 
the appropriate position dependent stiffness coefficient) yields the same fluctuation-induced 
non-universal  critical exponents that have previously been predicted using cruder models. 

The starting point for our analysis is a microscopic model Hamiltonian in the form of 
the local-density-approximation (LDA) functional 1141 
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where f h ( p )  is the bulk free-energy density of hard spheres. We introduce a simple Yukawa 
form for the attractive fluid-fluid interaction o ( r )  

where 01 = - dro( r )  is the integrated strength and A-' is the decay length. We consider 
a planar system V ( r )  V(z) ,  where the wall-fluid external field is 

with 6 P 0. The parameter p corresponds to a chemical potential. At mean-field level 
where fluctuations may be ignored H m ~ [ p ( r ) ]  may be identified with the grand-potential 
density functional which must be minimized to yield the Mp (planar) density distribution 
j(z). Consequently for this case the model reduces to the mean-field analyses of Sullivan 
[15] and Aukrust-Hauge [16] for the regimes A. = 1 and A, # 1 respectively. Let us 
suppose that the wall-gas interface at chemical potential p = pm(T)- is critically wet by 
liquid as T -+ T $ ( E , ~ ~ )  for some range of parameters b and A.. Note that A can be set 
equal to unity without loss of generality. For the Sullivan model (Au = 1) a critical-wetting 
transition occurs when 01pi(T) = 26, where pi(T) is the bulk density of the liquid phase at 
temperature T, and one finds that the mean-field critical-wetting exponents for the surface 
specific heat, adsorption and transverse correlation length are 01s"" = 0. ppF = O(ln) and 
urF = 1 respectively. For the Aukrust-Hauge model a critical wetting transition only occurs 
for A, 1 and temperatures such that KI c A,, where K! is the dimensionless inverse bulk 
liquid (true) correlation length measured in units of A. The values of the corresponding 
critical exponents are the same as those of the Sullivan model if A, z ZK,. However, 
if A, lies in the range K, < A, c 2 K I  then the mean-field critical exponents take on the 
non-universal values [16] 01s = -(%I -A,)/(A, - fg), ps = O(h) and YII = h,/2(A, - K,). 

In this letter we seek to understand the effect of renormahation in these models for 
dimension d = 3 by deriving an effective-interfacial Hamiltonian Hr[Z(y)] which has the 
form 

where E(l; T, p, E, A") is the position dependent stiffness coefficient and W(I: T, p. 6 ,  A,) 
is the binding potential. Following the work of Fisher and Jin we shall adopt the 
crossing-criterion definition of the collective coordinate l(y), where y is the transverse 
displacement vector along the wall. Consequently, l(y) defines a surface of fixed density 
px so that p(z = l(y), y) = px Vy. The value of px is chosen to lie in the interval 
p x  E ( p p ( T ) , p t ( T ) )  but need not be specified further. The effective Hamiltonian is 
defined by w i n g  over density distributions that respect the crossing-criterion and then 
using a saddle-point approximation to evaluate the partial trace. The result is the Fisher-Jin 
identification 

H d W l =  XLDA[PS(T; l(.))l (5) 

where p g ( ~ ; 1 ( . ) )  is the profile that minimizes (I) subject to the crossing-criterion. 
Performing the minimization of (1) yields 

o = L L k ( p z ( ~ ; ~ ( . ) ) ) - ~ c L ~ v ( ~ ) ) +  ~T~~(IT--II)PB(TI;~( . ) )  (6) 
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where p&) is the chemical potential for a homogeneous system of hard spheres of density 
p. In addition we need to impose two boundary conditions on &(T; I(.)). Firstly a bulk 
condition (A) 

where ph is the equilibrium bulk density; and secondly a natural continuity condition arising 
from the crossing-criterion (B) 

p& = (I(Y)*. y); I ( . ) )  = P X .  (8) 

We shall show that knowledge of the planar constrained profile px(z; I), which satisfies 
(6). (7) and (8) for the case I(y) = I, suffices to determine W(I; T , p L , ~ , A u )  and 
Z(I; T ,  p, E ,  A,) exactly. To demonstrate this we first note that it is easier to consider 
the field p;(z; I) p, , ( f i (z;  I)), a monotonically increasing function of h ( z ;  I), as our 
order parameter. For the choice of potentials (2) and (3) it is straightforward to show that 
the integral equation (6) can be converted to a second-order differential equation for p; 

with the boundary condition at the wall 

and recall we have set A = 1. It is convenient to define the function 

@@;I e @; - P)' - h ( P k ( f i ( z ;  I ) )  - P )  (11) 

with pk(p) the bulk hard sphere pressure. The function @(&) plays the role of the usual 
double-well potential from field-theory. 

Within our theory the binding potential W(I; T ,  p. E ,  A,) is defined (up to I-independent 
terms) by 

where p is the hulk pressure and V and A the semi-infinite volume and transverse area 
resptively. After a little algebra it is possible to express W(I; T ,  p, E,  AV) elegantly. in 
terms of the field p;(z; I). We find 

where we have omitted [-independent terms that depend only on V(z) .  
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The stiffness coefficient C(l ;  T, p. E, Ay) is evaluated following the argument of Fisher, 
Jin and Parry 1171. Consider the ansatz 

PE(T; I ( ' ) )  ZZ Pzk;  l (g))  T = (z, y). (14) 

Substitution of this trial function shows that (6) is indeed solved up to terms of 0(1~~1') 
where IEL is a parallel 0.e along the wall) wavevector. Moreover the approximation (14) 
automatically satisfies the required boundary conditions A and B. It follows that the ansatz 
suffices to exactly determine the Hamiltonian (4) to order l t q . I 2 .  In this way we derive the 
following 'Triezenberg-Zwanzig' type expression for C(1; T, p. E ,  A,) 

where the function CYF(zl, z2) is the mean-field result for the second-moment of the direct 
correlation function [I81 

(16) 

It is possible to convert the expression (15) into a simpler one involving the field pz(z; E). 
We only quote our final result 

(YB 
4 

cYF(zI, 22) = -(I + IZI - ~ 2 ~ ) e - ' ~ ~ - ~ ~ ' .  

The proof of this result is similar to the analysis given in the appendix of Pany and Evans 
[18]. Equations (9), (IO), (13) and (17) appropriate to the LDA model (1) may now be 
studied in precisely the same way as Fisher and Jin analysed the corresponding Landau- 
Ginzburg-Wilson equations. We choose a doubleparabola form for the function @(&). 
Our results are as follows. 

Specifc heat exponent a?' = 0. Such an exponent arises for the cases hU = 1 (Sullivan- 
type) and A" > 2 ~ 1 ,  A, > 1. The case A, = 1 is particularly s!mightfonvard since it is almost 
identical in structure to the Fisher-Jin analysis. We find that the leading two terms in the 
expansions of W(1; T ,  p, E, A,) and E(Z; T, p, E, A"), at coexistence p = p M ( T ) - ,  are the 
same as for the LGW model. It follows that provided the value of o = ~:kgT/4zE1~ is 
not too large, the transition is driven fluctuation-induced first-order. Here Elg is the surface 
tension of the liquid-gas interface at temperature T .  

Specific heat exponent CY?' < 0. A negative specific heat critical exponent arises for 
the case 2ir1 > A, > KL,A,  > I where our results for the expansions of W(1; T, p, E, A,) 
and Z(i; T, fi .  E,  A"), at saturation chemical potential, are 

W(I;  T. p, E ,  A ~ )  = Q C - ~ ~ '  + qe-*U' + D(e-*ll) (18) 

and 

Z(1; T, p, E ,  A,) = +s,e-Kt' + ske-**' + U(le-*#'). (19) 

The coefficients o, and s, are both proportional to the reduced temperam 5 = (T - 
are non-zero and positive in the vicinity of r = 0. Consequently 

we observe that there is no longer a negative next-to leading order term in the stiffness 
whilst U* and 
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coefficient to drive  the^ transition first-order, hence if we apply the renormalization group 
scheme of Fisher and Jin it follows that the transition remains second-order. The values of 
the critical exponents are the same'as those calculated by Hauge and Olaussen [19]. For 
the correlation length exponent the RG results are 

, Letter to the Editor 

. 
a, , . I  

~~ ~ ; o < w < w c  

(20) 
20." - K!)  (1 - k w )  

(45 - 45)" ~. ; 0, c oJ< 2 

; 0 > 2  . .  
where 

2 

w c = 2 ( 4 ) .  
\ 4 1 

Our results show that the stiffness instability is specific to the.case where the meat-field 
(bare) critical wetting transition is  strictly second   order (aFF =I 0). For the case asm c 0 
there is no stiffness instability and, the critical wetting transition is characterized by non- 
universal (and'non-MF) critical exponents. 

Finally we discuss possible implications of these findings on the interpretation of~Ising 
model simulations. One way of testing the stiffness instability mechanism proposed by 
Fisher and Jin would be to simulate a model with enough tunable parameters that both 
critical and fluctuation-induced first-order wetting transitions are possible. To this end we 
first note that the phase diagram of the LDA model (1) is the same as that of the modified 
LGW Hamiltonian 

H[m(r)l = / d r  { : (Vn~(r))~ + @(m(r) )  + 8 ( z ) @ i ( m ( r ) )  + &e-"m(r) } (22) 

where @(m) and @ I  (m) are standard bulk and surface energy-density functions. Analysis of 
this model shows that for the choice of repulsive surface interaction 21 > 0 and an attractive 
surface field hi the bare critical wetting transition remains second-order after renormalization 
provided K < < 2x where K is the inverse bulk correlation length of the adsorded phase. 
Next we note that (22) may be regarded as the continuum limit of a semi-infinite Ising 
model with amactive surface field and an additional repulsive term cx e-l2 which acts on 
spins away from the surface. A computer study of this lattice Hamiltonian would therefore 
provide a straight test of the proposed stiffness instability mechanism. For example, if the 
simulations of this model revealed the appropriate non-universal fluctuation-induced critical 
exponents we should conclude that theory and simulation are in good agreement. If this 
were the case, the stiffness instability mechanism of Fisher and Jin would almost certainly 
be the correct interpretation of the original Ising model simulation results. If on the other 
hand the simulations of this model did not reveal dramatic non-universal and non-kw critical 
exponents we would have to conclude that the existing RG analyses of continuum effective 
Hamiltonians do not describe some essential physics associated with the phase transition in 
a three-dimensional lattice model. 

In conclusion we have shown that for a model critical-wetting transition with short- 
ranged forces in three-dimensions the Fisher-Jin stiffness instability is specific to the case 
where the unrenormalized phase transition is precisely second-order. Renormalization group 
analysis of an 'Aukrust-Hauge' type model still predicts dramatic fluctuation-induced non- 
universal critical exponents. 

The authors would like to thank Professor M E Fisher and Dr A I Jin for discussion and 
correspondence. ?his work was supported by the SERC. 
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